If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+12X=492
We move all terms to the left:
X^2+12X-(492)=0
a = 1; b = 12; c = -492;
Δ = b2-4ac
Δ = 122-4·1·(-492)
Δ = 2112
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2112}=\sqrt{64*33}=\sqrt{64}*\sqrt{33}=8\sqrt{33}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-8\sqrt{33}}{2*1}=\frac{-12-8\sqrt{33}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+8\sqrt{33}}{2*1}=\frac{-12+8\sqrt{33}}{2} $
| 4x-7x=55 | | 8x+36=180-4x | | x/9+16=2” | | 0.85x=1562.30 | | x/9+16=2 | | 10×p=70 | | -18-6k=6(1* | | -2(y-4)=20-2y-20 | | x^2+5x=123 | | 2a(35)=0 | | 5(2y−4)=2(5y−10) | | 4(y-4)=-12 | | 15a+6=-9 | | 2(d+14)=-10 | | 4m−11=45 | | 1111m-15=12m+14 | | 9999999999999999x99999999999=9 | | x+3+(3/x)=0 | | 5d+10=5 | | 2(q+19)=10 | | .24*x=306 | | 19=b+12 | | 1/4y+4=1/7y | | 5(w+2)=20 | | 3=-t8 | | 8.5x8=68 | | 95+7)/x=24 | | .24*x=43 | | 6–y=−2y+9 | | 2q+8=10 | | (7x+1)(3x+4)=0 | | 10^2x-5(10^x)+6=0 |